Chemical Properties
of Alcohols and Phenols

Chemical properties of any organic compound largely depends on the functional group attached to it. The hydroxyl group (-OH) determines most of the chemical properties of alcohols and phenols. The following types of reactions are seen in -OH derivatives :

The cleavage of O−H bond

Both alcohols and phenols readily release proton (the H+ ion attached to the oxygen atom).

Acidic character

Take a look at the reactions below :

Acidic nature of alcohol : alcohol donates a proton
Acidic nature of alcohol : alcohol donates a proton

In above reactions, alcohols and phenols are donating a proton which suggests that they are acidic in nature.

Acids are proton donors whereas bases are proton acceptors.

Arrange CH3CH2OH, CF3CH2OH, CCl3CH2OH in increasing order of their acidic strength.

Alcohols are weaker acids than water

Reason : Electron attracting groups (−I groups) increase the acidity of compounds whereas electron releasing groups (+I groups) decrease the acidity. Alcohols are weaker acids than water because of the presence of electron releasing R (hydrocarbon part) group in alcohols. Phenols ,however, are stronger acids than water because they form phenoxide ion on losing a proton which is resonance stabilized.

Comparison of acidity of primary, secondary and tertiary alcohols :

Alkyl groups being electron donating in nature increase the +I-effect. Hence, +I-effect in alcohols follows the order :

Increasing order of +I-effect in alcohols

Electron releasing groups in increasing order of +I-effect

Since +I-effect reduces the acidity of compounds. Acidity of alcohols follows the order : primary > secondary > tertiary.

Phenols are more acidic than alcohols

Phenols react with aqueous alkalies whereas alcohols do not.

Phenol reacts with aqueous alkalies
Alcohols do not react with aqueous alkalies

Moreover, phenols turn blue litmus red while alcohols do not have any effect on litmus paper. This suggests that phenols are stronger acids than alcohols.

Reason : The reason for the stronger acidity of phenols can be understood with the help of resonance structures given below :

Resonance structure of phenol

As a result of resonance, the oxygen atom acquires a partial positive charge. Because of this, the O−H bond becomes weak and splits off a proton.

Phenol donates a proton to form phenoxide ion

The phenoxide ion also exhibits resonance. Now, take a look at the resonance structure of the phenoxide ion.

Resonance structure of phenoxide ion

Although both phenol and phenoxide ion are stabilized by resonance, phenoxide ion only carries a negative charge whereas phenol involves a separation of negative and positive charge. Since resonance structures that involve separation of negative and positive charge are less stable (discussed in major and minor contributors in resonance), phenoxide ion is more stable than phenols. In other words, phenol has a tendency to form a more stable phenoxide ion by losing a proton.

Lets take the case of alcohols

Alkoxide ion

Alcohols release protons to form alkoxide ions and neither the alcohol molecule nor the alkoxide ion exhibits resonance. Further, due to the formal negative charge on the alkoxide ion, it has greater energy than alcohol which makes it less stable. In other words, alcohols have a negligible tendency to form less stable alkoxide ion by releasing a proton.

Effect of substituents on the acidity of phenols

Arrange phenol; 2,4,6-trinitrophenol; 2,4-dinitrophenol; o-nitrophenol; p-nitrophenol in order of decreasing acidic strength.

Arrange phenol, o-cresol (2-methylphenol), m-cresol (3-methylphenol), p-cresol in decreasing order of their acidity.

The cleavage of Carbon-hydroxyl bond

Alcohols undergo a number of reactions involving the cleavage of carbon-hydroxyl bond. Phenols, however, do not undergo these reactions because their is some double bond character between C-O bond of phenol due to resonance which is difficult to break.

Electrophilic Substitution Reactions in Phenols

The -OH group in phenol activates phenols towards electrophilic substitution reactions.


Question : Ortho and para-nitrophenols are more acidic than phenol. Explain why?

Answer : The presence of electron withdrawing group at ortho and para positions of phenol tend to increase the acidity of phenol. Since nitro group (-NO2) is an electron withdrawing group, its presence at ortho and para positions makes phenol more acidic.

Question : Phenol is a very weak acid. What substitutions in the molecule can make it a stronger acid and a weaker acid and why?

Answer : Electron withdrawing groups such as -NO2 will increase the acidic character of phenol because they stabilise the phenoxide ion whereas electron releasing groups such as -CH3 will decrease the acidity of phenol because their presence destabilises the phenoxide ion.

Question : Out of benzene and phenol, which is more easily nitrated and why?

Answer : Phenol is nitrated more easily because the -OH group in phenol acts as electron releasing group and increases the electron density at o- and p-positions of phenol.